Skip to main content
All CollectionsReporting solutionsAvailable reportsForecasting reports: Arima Plus forecasting report
BigQuery tables behind Looker studio dashboard for the Arima Plus forecasting report
BigQuery tables behind Looker studio dashboard for the Arima Plus forecasting report
Jonas Østergård Bæk avatar
Written by Jonas Østergård Bæk
Updated over 4 months ago

If you want to work with the data output directly in BigQuery, getting started is straightforward. Below is an example query that retrieves the total cost and conversions for a specific conversion name across different platforms:

SELECT    
date,
platform,
data_type as is_forecasted_data,
SUM(pseudo_cost) AS total_pseudo_cost,
SUM(conversions) AS total_conversions,
SUM(conversion_value) AS total_conversion_value
FROM `project.dataset.arima_plus_output_test_arima_plus_{table_suffix}` WHERE date >= '2023-01-01'
AND source_conv_name = "gads: purchase" GROUP BY date, platform, data_type

Below is the detailed schema of the output tables in BigQuery:

Table: arima_plus_output_test_arima_plus_{table_suffix}

Full name

Type

Description

date

DATE

The date of the record.

market_name

STRING

The name of the market.

channel_grouping

STRING

The grouping of marketing channels.

source_conv_name

STRING

The original name of the conversion, e.g., platform + conversion name.

custom_currency

STRING

The currency used for custom calculations.

data_type

STRING

Whether the data is ACTUAL or FORECAST

last_updated

DATE

The date when the record was last updated.

pseudo_cost

FLOAT

The estimated cost for the campaign.

conversions

FLOAT

The number of conversions recorded.

conversion_value

FLOAT

The total value of the conversions.

pseudo_cost_interval_lower_bound

FLOAT

The lower bound of the confidence interval for the estimated cost.

pseudo_cost_interval_upper_bound

FLOAT

The upper bound of the confidence interval for the estimated cost.

pseudo_cost_standard_error

FLOAT

The standard error of the estimated cost.

conversions_interval_lower_bound

FLOAT

The lower bound of the confidence interval for conversions.

conversions_interval_upper_bound

FLOAT

The upper bound of the confidence interval for conversions.

conversions_standard_error

FLOAT

The standard error of the number of conversions.

conversion_value_interval_lower_bound

FLOAT

The lower bound of the confidence interval for conversion value.

conversion_value_interval_upper_bound

FLOAT

The upper bound of the confidence interval for conversion value.

conversion_value_standard_error

FLOAT

The standard error of the conversion value.

benchmark_forecasted_pseudo_cost

FLOAT

The benchmark forecasted cost for the campaign.

benchmark_forecasted_conversion_value

FLOAT

The benchmark forecasted value of conversions.

benchmark_forecasted_conversions

FLOAT

The benchmark forecasted number of conversions.

has_cost_benchmark

BOOLEAN

Indicates whether a cost benchmark is available.

has_conv_benchmark

BOOLEAN

Indicates whether a conversion benchmark is available.

has_conv_value_benchmark

BOOLEAN

Indicates whether a conversion value benchmark is available.

Did this answer your question?